Hilbert Series of Quasi-invariant Polynomials

Archer Wang

Clements High School

MIT PRIMES Conference, May 19, 2018 Mentor: Dr. Xiaomeng Xu

Archer Wang (Mentor: Dr. Xiaomeng Xu)

Quasi-Invariant Polynomials

May 18, 2018 1 / 14

• Let s_{ij} be the operator interchanging x_i and x_j in a function $f(x_1, x_2, ..., x_n)$

Image: A math a math

m-Quasiinvariance

- Let s_{ij} be the operator interchanging x_i and x_j in a function $f(x_1, x_2, ..., x_n)$
- Ex. $s_{13}(x_1^2x_2 + x_3^5) = (x_3^2x_2 + x_1^5)$

• Let s_{ij} be the operator interchanging x_i and x_j in a function $f(x_1, x_2, ..., x_n)$

• Ex.
$$s_{13}(x_1^2x_2+x_3^5)=(x_3^2x_2+x_1^5)$$

Definition

Let *m* be a non-negative integer and *k* be a field. A polynomial $F \in k[x_1, x_2, ..., x_n]$ is *m*-quasiinvariant if for all $1 \le i < j \le n$

$$(1 - s_{ij})F(x_1, x_2, ..., x_n)$$

is divisible by $(x_i - x_j)^{2m+1}$.

• Let s_{ij} be the operator interchanging x_i and x_j in a function $f(x_1, x_2, ..., x_n)$

• Ex.
$$s_{13}(x_1^2x_2+x_3^5)=(x_3^2x_2+x_1^5)$$

Definition

Let *m* be a non-negative integer and *k* be a field. A polynomial $F \in k[x_1, x_2, ..., x_n]$ is *m*-quasiinvariant if for all $1 \le i < j \le n$

$$(1 - s_{ij})F(x_1, x_2, ..., x_n)$$

is divisible by $(x_i - x_j)^{2m+1}$.

• Q_m is the space of m-quasiinvariant polynomials

• Easy to check that all polynomials are in Q_0

• • • • • • • •

- Easy to check that all polynomials are in Q_0
- Symmetric polynomials are always in Q_m for any m

- Easy to check that all polynomials are in Q_0
- Symmetric polynomials are always in Q_m for any m

-Examples for n = 2:

- Easy to check that all polynomials are in Q_0
- Symmetric polynomials are always in Q_m for any m

Examples for
$$n = 2$$
:
 $(k = \mathbb{C})$
• $F(x, y) = 2x^3 + 6xy^2 \in Q_1$ since $F(x, y) - F(y, x) = 2(x - y)^3$
• $F(x, y) = x^5 - 5x^3y^2 \in Q_1$ since
 $F(x, y) - F(y, x) = (x - y)^3(x^2 + 3xy + y^2)$

- Easy to check that all polynomials are in Q_0
- Symmetric polynomials are always in Q_m for any m

-Examples for
$$n = 2$$
:
 $(k = \mathbb{C})$
• $F(x, y) = 2x^3 + 6xy^2 \in Q_1$ since $F(x, y) - F(y, x) = 2(x - y)^3$
• $F(x, y) = x^5 - 5x^3y^2 \in Q_1$ since
 $F(x, y) - F(y, x) = (x - y)^3(x^2 + 3xy + y^2)$
 $(k = \mathbb{F}_2)$
• $F(x, y) = x^8 \in Q_3$ since $F(x, y) - F(y, x) = x^8 - y^8 = (x - y)^8$

Archer Wang (Mentor: Dr. Xiaomeng Xu)

• Want to measure "size" of space of quasi-invariant polynomials

Hilbert Series

- Want to measure "size" of space of quasi-invariant polynomials
- $Q_{m,d}$ = vector space of homogeneous *m*-quasiinvariants of degree *d*

Hilbert Series

- Want to measure "size" of space of quasi-invariant polynomials
- $Q_{m,d}$ = vector space of homogeneous *m*-quasiinvariants of degree *d*
- Q_m can be decomposed into

$$\bigoplus_{d\geq 0} Q_{m,d} = Q_{m,0} \oplus Q_{m,1} \oplus \dots$$

- Want to measure "size" of space of quasi-invariant polynomials
- $Q_{m,d}$ = vector space of homogeneous *m*-quasiinvariants of degree *d*
- Q_m can be decomposed into

$$\bigoplus_{d\geq 0} Q_{m,d} = Q_{m,0} \oplus Q_{m,1} \oplus ...$$

Definition

The Hilbert series of the space of m-quasiinvariants to be

$$HS_m(t) = \sum_{d \ge 0} t^d dim(Q_{m,d})$$

• Generalization of vector space over a field

< A

- Generalization of vector space over a field
- Q_m is a module over the ring of symmetric polynomials

- Generalization of vector space over a field
- Q_m is a module over the ring of symmetric polynomials
- Closed under addition
- Closed under multiplication by ring elements(symmetric polynomials)
- Satisfies distributive property

• Q_m is a finitely generated module over the ring of symmetric polynomials

- Q_m is a finitely generated module over the ring of symmetric polynomials
- Thus, $HS_m(t)$ can be written as

$$\frac{P(t)}{\prod_{i=1}^n (1-t^i)}$$

where P(t) is a polynomial with integer coefficients.

Hilbert series of m-quasiinvariants in $\ensuremath{\mathbb{C}}$ is

$$extsf{HS}_m(t) = n! t^{m\binom{n}{2}} \sum_{ extsf{Youngdiagrams}} \prod_{i=1}^n t^{m(l_i-a_i)+l_i} rac{1-t'}{h_i(1-t^{h_i})}$$

Hilbert series of m-quasiinvariants in $\ensuremath{\mathbb{C}}$ is

$$HS_m(t) = n! t^{m\binom{n}{2}} \sum_{Young diagrams} \prod_{i=1}^n t^{m(l_i-a_i)+l_i} \frac{1-t^i}{h_i(1-t^{h_i})}$$

• For example, when n = 4 and m = 5 the Hilbert series is $1 + t + 2t^2 + 3t^3 + 5t^4 + 6t^5 + 9t^6 + 11t^7 + 15t^8...$

Hilbert series of m-quasiinvariants in $\mathbb C$ is

$$HS_m(t) = n! t^{m\binom{n}{2}} \sum_{Young diagrams} \prod_{i=1}^n t^{m(l_i-a_i)+l_i} \frac{1-t^i}{h_i(1-t^{h_i})}$$

- For example, when n = 4 and m = 5 the Hilbert series is $1 + t + 2t^2 + 3t^3 + 5t^4 + 6t^5 + 9t^6 + 11t^7 + 15t^8...$
- Young diagrams are objects useful in representation theory

Hilbert series of m-quasiinvariants in $\mathbb C$ is

$$extsf{HS}_m(t) = n! t^{m\binom{n}{2}} \sum_{ extsf{Youngdiagrams}} \prod_{i=1}^n t^{m(l_i-a_i)+l_i} rac{1-t'}{h_i(1-t^{h_i})}$$

- For example, when n = 4 and m = 5 the Hilbert series is $1 + t + 2t^2 + 3t^3 + 5t^4 + 6t^5 + 9t^6 + 11t^7 + 15t^8...$
- Young diagrams are objects useful in representation theory
- Want to generalize in \mathbb{F}_p

• Let g be a generic homogeneous polynomial of degree d. What can we say about the Hilbert series of the space of quasiinvariants divisible by g?

- Let g be a generic homogeneous polynomial of degree d. What can we say about the Hilbert series of the space of quasiinvariants divisible by g?
- Work with n=2

- Let g be a generic homogeneous polynomial of degree d. What can we say about the Hilbert series of the space of quasiinvariants divisible by g?
- Work with n=2
- Ex. If $g = x^2 + 5y^2$, the Hilbert series for the space of 2-quasiinvariants divisible by g is

$$\frac{t^5 + t^4}{(1-t)(1-t^2)}$$

Theorem

If $g = (ax^k + by^k)$ and $a^2 \neq b^2$ then the Hilbert series divisible by g is

$$t^{k}\left(\frac{t^{2m}+t^{2m+1}+\sum_{i=1}^{m}t^{2(m-i)+\min(i,k)}-\sum_{i=1}^{m}t^{2(m-i)+\min(i,k)+2}}{(1-t)(1-t^{2})}\right)$$

• Determine when the Hilbert Series for Q_m in n variables is greater in \mathbb{F}_p than in \mathbb{C}

• Determine when the Hilbert Series for Q_m in n variables is greater in \mathbb{F}_p than in \mathbb{C}

Theorem

If there exists integers $a \ge 1$, $k \ge 0$, and $b \ge 0$ such that

$$p^a(nk+1)+2b\binom{n}{2}\leq mn$$

$$p^{a}(2k+1)+2b \geq 2m+1,$$

then the Hilbert series of Q_m in n variables is greater in \mathbb{F}_p than in \mathbb{C}

• Determine when the Hilbert Series for Q_m in n variables is greater in \mathbb{F}_p than in \mathbb{C}

Theorem

If there exists integers $a \ge 1$, $k \ge 0$, and $b \ge 0$ such that

$$p^a(nk+1)+2b\binom{n}{2}\leq mn$$

$$p^{a}(2k+1)+2b \geq 2m+1,$$

then the Hilbert series of Q_m in n variables is greater in \mathbb{F}_p than in \mathbb{C}

• If a = 1, k = 0, b = 0, then the Hilbert series is greater for $2m + 1 \le p \le mn$

Conjecture

The previous conditions are necessary for the Hilbert series to be greater in \mathbb{F}_p than in \mathbb{C} .

Conjecture

The previous conditions are necessary for the Hilbert series to be greater in \mathbb{F}_p than in \mathbb{C} .

Conjecture

Furthermore, the minimal non-symmetric polynomial in \mathbb{F}_p is of the form

$$G = P_k^{p^a} \prod_{1 \le i < j \le n} (x_i - x_j)^{2b}$$

where P_k is a generator of degree kn + 1 in \mathbb{C} .

Status of Project

Figure: n=4

Archer Wang (Mentor: Dr. Xiaomeng Xu)

-

Image: A math a math

- Generalize results for first problem for generic g
- Compute Hilbert series for finite fields using the representation theory of the Cherednik algebra

- Xiaomeng Xu
- Pavel Etingof
- Michael Ren
- the MIT PRIMES Program