Hilbert Series of Quasi-invariant Polynomials

Archer Wang

Clements High School

MIT PRIMES Conference, May 19, 2018 Mentor: Dr. Xiaomeng Xu

m-Quasiinvariance

- Let $s_{i j}$ be the operator interchanging x_{i} and x_{j} in a function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

m-Quasiinvariance

- Let $s_{i j}$ be the operator interchanging x_{i} and x_{j} in a function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- Ex. $s_{13}\left(x_{1}^{2} x_{2}+x_{3}^{5}\right)=\left(x_{3}^{2} x_{2}+x_{1}^{5}\right)$

m-Quasiinvariance

- Let $s_{i j}$ be the operator interchanging x_{i} and x_{j} in a function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- Ex. $s_{13}\left(x_{1}^{2} x_{2}+x_{3}^{5}\right)=\left(x_{3}^{2} x_{2}+x_{1}^{5}\right)$

Definition

Let m be a non-negative integer and k be a field. A polynomial $F \in k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is m-quasiinvariant if for all $1 \leq i<j \leq n$

$$
\left(1-s_{i j}\right) F\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

is divisible by $\left(x_{i}-x_{j}\right)^{2 m+1}$.

m-Quasiinvariance

- Let $s_{i j}$ be the operator interchanging x_{i} and x_{j} in a function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- Ex. $s_{13}\left(x_{1}^{2} x_{2}+x_{3}^{5}\right)=\left(x_{3}^{2} x_{2}+x_{1}^{5}\right)$

Definition

Let m be a non-negative integer and k be a field. A polynomial $F \in k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is m-quasiinvariant if for all $1 \leq i<j \leq n$

$$
\left(1-s_{i j}\right) F\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

is divisible by $\left(x_{i}-x_{j}\right)^{2 m+1}$.

- Q_{m} is the space of m-quasiinvariant polynomials

Examples

- Easy to check that all polynomials are in Q_{0}

Examples

- Easy to check that all polynomials are in Q_{0}
- Symmetric polynomials are always in Q_{m} for any m

Examples

- Easy to check that all polynomials are in Q_{0}
- Symmetric polynomials are always in Q_{m} for any m
-Examples for $n=2$:

Examples

- Easy to check that all polynomials are in Q_{0}
- Symmetric polynomials are always in Q_{m} for any m
-Examples for $n=2$:
$(k=\mathbb{C})$
- $F(x, y)=2 x^{3}+6 x y^{2} \in Q_{1}$ since $F(x, y)-F(y, x)=2(x-y)^{3}$
- $F(x, y)=x^{5}-5 x^{3} y^{2} \in Q_{1}$ since $F(x, y)-F(y, x)=(x-y)^{3}\left(x^{2}+3 x y+y^{2}\right)$

Examples

- Easy to check that all polynomials are in Q_{0}
- Symmetric polynomials are always in Q_{m} for any m
-Examples for $n=2$:
$(k=\mathbb{C})$
- $F(x, y)=2 x^{3}+6 x y^{2} \in Q_{1}$ since $F(x, y)-F(y, x)=2(x-y)^{3}$
- $F(x, y)=x^{5}-5 x^{3} y^{2} \in Q_{1}$ since $F(x, y)-F(y, x)=(x-y)^{3}\left(x^{2}+3 x y+y^{2}\right)$
$\left(k=\mathbb{F}_{2}\right)$
- $F(x, y)=x^{8} \in Q_{3}$ since $F(x, y)-F(y, x)=x^{8}-y^{8}=(x-y)^{8}$

Hilbert Series

- Want to measure "size" of space of quasi-invariant polynomials

Hilbert Series

- Want to measure "size" of space of quasi-invariant polynomials
- $Q_{m, d}=$ vector space of homogeneous m-quasiinvariants of degree d

Hilbert Series

- Want to measure "size" of space of quasi-invariant polynomials
- $Q_{m, d}=$ vector space of homogeneous m-quasiinvariants of degree d
- Q_{m} can be decomposed into

$$
\bigoplus_{d \geq 0} Q_{m, d}=Q_{m, 0} \oplus Q_{m, 1} \oplus \ldots
$$

Hilbert Series

- Want to measure "size" of space of quasi-invariant polynomials
- $Q_{m, d}=$ vector space of homogeneous m-quasiinvariants of degree d
- Q_{m} can be decomposed into

$$
\bigoplus_{d \geq 0} Q_{m, d}=Q_{m, 0} \oplus Q_{m, 1} \oplus \ldots
$$

Definition

The Hilbert series of the space of m-quasiinvariants to be

$$
H S_{m}(t)=\sum_{d \geq 0} t^{d} \operatorname{dim}\left(Q_{m, d}\right)
$$

Module Structure

- Generalization of vector space over a field

Module Structure

- Generalization of vector space over a field
- Q_{m} is a module over the ring of symmetric polynomials

Module Structure

- Generalization of vector space over a field
- Q_{m} is a module over the ring of symmetric polynomials
- Closed under addition
- Closed under multiplication by ring elements(symmetric polynomials)
- Satisfies distributive property

More Properties

- Q_{m} is a finitely generated module over the ring of symmetric polynomials

More Properties

- Q_{m} is a finitely generated module over the ring of symmetric polynomials
- Thus, $H S_{m}(t)$ can be written as

$$
\frac{P(t)}{\prod_{i=1}^{n}\left(1-t^{i}\right)}
$$

where $P(t)$ is a polynomial with integer coefficients.

Previous Result

Theorem (Felder and Veselov)

Hilbert series of m-quasiinvariants in \mathbb{C} is

$$
H S_{m}(t)=n!t^{m\binom{n}{2}} \sum_{Y o u n g d i a g r a m s} \prod_{i=1}^{n} t^{m\left(l_{i}-a_{i}\right)+l_{i}} \frac{1-t^{i}}{h_{i}\left(1-t^{h_{i}}\right)}
$$

Previous Result

Theorem (Felder and Veselov)

Hilbert series of m-quasiinvariants in \mathbb{C} is

$$
H S_{m}(t)=n!t^{m\binom{n}{2}} \sum_{\text {Youngdiagrams }} \prod_{i=1}^{n} t^{m\left(l_{i}-a_{i}\right)+l_{i}} \frac{1-t^{i}}{h_{i}\left(1-t^{h_{i}}\right)}
$$

- For example, when $n=4$ and $m=5$ the Hilbert series is

$$
1+t+2 t^{2}+3 t^{3}+5 t^{4}+6 t^{5}+9 t^{6}+11 t^{7}+15 t^{8} \ldots
$$

Previous Result

Theorem (Felder and Veselov)

Hilbert series of m-quasiinvariants in \mathbb{C} is

$$
H S_{m}(t)=n!t^{m\binom{n}{2}} \sum_{\text {Youngdiagrams }} \prod_{i=1}^{n} t^{m\left(l_{i}-a_{i}\right)+l_{i}} \frac{1-t^{i}}{h_{i}\left(1-t^{h_{i}}\right)}
$$

- For example, when $n=4$ and $m=5$ the Hilbert series is

$$
1+t+2 t^{2}+3 t^{3}+5 t^{4}+6 t^{5}+9 t^{6}+11 t^{7}+15 t^{8} \ldots
$$

- Young diagrams are objects useful in representation theory

Previous Result

Theorem (Felder and Veselov)

Hilbert series of m-quasiinvariants in \mathbb{C} is

$$
H S_{m}(t)=n!t^{m\binom{n}{2}} \sum_{\text {Youngdiagrams }} \prod_{i=1}^{n} t^{m\left(l_{i}-a_{i}\right)+l_{i}} \frac{1-t^{i}}{h_{i}\left(1-t^{h_{i}}\right)}
$$

- For example, when $n=4$ and $m=5$ the Hilbert series is $1+t+2 t^{2}+3 t^{3}+5 t^{4}+6 t^{5}+9 t^{6}+11 t^{7}+15 t^{8} \ldots$
- Young diagrams are objects useful in representation theory
- Want to generalize in \mathbb{F}_{p}

Status of Project

- Let g be a generic homogeneous polynomial of degree d. What can we say about the Hilbert series of the space of quasiinvariants divisible by g ?

Status of Project

- Let g be a generic homogeneous polynomial of degree d. What can we say about the Hilbert series of the space of quasiinvariants divisible by g ?
- Work with $\mathrm{n}=2$

Status of Project

- Let g be a generic homogeneous polynomial of degree d. What can we say about the Hilbert series of the space of quasiinvariants divisible by g ?
- Work with $\mathrm{n}=2$
- Ex. If $g=x^{2}+5 y^{2}$, the Hilbert series for the space of 2-quasiinvariants divisible by g is

$$
\frac{t^{5}+t^{4}}{(1-t)\left(1-t^{2}\right)}
$$

Theorem

If $g=\left(a x^{k}+b y^{k}\right)$ and $a^{2} \neq b^{2}$ then the Hilbert series divisible by g is

$$
t^{k}\left(\frac{t^{2 m}+t^{2 m+1}+\sum_{i=1}^{m} t^{2(m-i)+m i n(i, k)}-\sum_{i=1}^{m} t^{2(m-i)+\min (i, k)+2}}{(1-t)\left(1-t^{2}\right)}\right)
$$

Status of Project

- Determine when the Hilbert Series for Q_{m} in n variables is greater in \mathbb{F}_{p} than in \mathbb{C}

Status of Project

- Determine when the Hilbert Series for Q_{m} in n variables is greater in \mathbb{F}_{p} than in \mathbb{C}

Theorem

If there exists integers $a \geq 1, k \geq 0$, and $b \geq 0$ such that

$$
\begin{aligned}
& p^{a}(n k+1)+2 b\binom{n}{2} \leq m n \\
& p^{a}(2 k+1)+2 b \geq 2 m+1,
\end{aligned}
$$

then the Hilbert series of Q_{m} in n variables is greater in \mathbb{F}_{p} than in \mathbb{C}

Status of Project

- Determine when the Hilbert Series for Q_{m} in n variables is greater in \mathbb{F}_{p} than in \mathbb{C}

Theorem

If there exists integers $a \geq 1, k \geq 0$, and $b \geq 0$ such that

$$
\begin{aligned}
& p^{a}(n k+1)+2 b\binom{n}{2} \leq m n \\
& p^{a}(2 k+1)+2 b \geq 2 m+1,
\end{aligned}
$$

then the Hilbert series of Q_{m} in n variables is greater in \mathbb{F}_{p} than in \mathbb{C}

- If $a=1, k=0, b=0$, then the Hilbert series is greater for $2 m+1 \leq p \leq m n$

Status of Project

Conjecture

The previous conditions are necessary for the Hilbert series to be greater in \mathbb{F}_{p} than in \mathbb{C}.

Status of Project

Conjecture

The previous conditions are necessary for the Hilbert series to be greater in \mathbb{F}_{p} than in \mathbb{C}.

Conjecture

Furthermore, the minimal non-symmetric polynomial in \mathbb{F}_{p} is of the form

$$
G=P_{k}^{p^{a}} \prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)^{2 b}
$$

where P_{k} is a generator of degree $k n+1$ in \mathbb{C}.

Status of Project

\mathbf{m}	2	3	5	7	11	13	17	19	23	29	31
0											
1											
2											
3											
4											
5											
6											
7											
8											
9											

Figure: $\mathrm{n}=4$

Future Studies

- Generalize results for first problem for generic g
- Compute Hilbert series for finite fields using the representation theory of the Cherednik algebra

Acknowledgements

- Xiaomeng Xu
- Pavel Etingof
- Michael Ren
- the MIT PRIMES Program

